总在科幻电影里看到人脸识别,现在我们也可以编程来实现啦。哈哈~~
OpenCV是Intel®开源计算机视觉库。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法。
OpenCV 拥有包括 300 多个C函数的跨平台的中、高层 API。它不依赖于其它的外部库——尽管也可以使用某些外部库。它还提供了Python、Ruby、MATLAB等语言的接口,实现了图像处理和计算机视觉方

面的很多通用算法。

所以总体来说OpenCV的人脸检测功能在是很不错的。

效果图如下:

【后端开发】Python+OpenCV人脸识别技术详解

下面我们就用python + OpenCV实现人脸识别。

开发运行环境:
Centos5.5
OpenCV
python2.7
PIL

下面上代码:

#!/usr/bin/python
# -*- coding: UTF-8 -*-

# face_detect.py

# Face Detection using OpenCV. Based on sample code from:
# http://www.pythontab.com

# Usage: python face_detect.py

import sys, os
#引入opencv库中的相应组件
from opencv.cv import *
from opencv.highgui import *
#引入PIL库
from PIL import Image, ImageDraw

from math import sqrt

def detectObjects(image):
#首先把图片转换为灰度模式,以便找到人脸位置
grayscale = cvCreateImage(cvSize(image.width, image.height), 8, 1)
cvCvtColor(image, grayscale, CV_BGR2GRAY)

storage = cvCreateMemStorage(0)
cvClearMemStorage(storage)
cvEqualizeHist(grayscale, grayscale)

cascade = cvLoadHaarClassifierCascade(
\'/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml\',
cvSize(1,1))
faces = cvHaarDetectObjects(grayscale, cascade, storage, 1.1, 2,
CV_HAAR_DO_CANNY_PRUNING, cvSize(20,20))

result = []
for f in faces:
result.append((f.x, f.y, f.x+f.width, f.y+f.height))

return result

def grayscale(r, g, b):
return int(r * .3 + g * .59 + b * .11)

def process(infile, outfile):

image = cvLoadImage(infile);
if image:
faces = detectObjects(image)

im = Image.open(infile)

if faces:
draw = ImageDraw.Draw(im)
for f in faces:
draw.rectangle(f, outline=(255, 0, 255))

im.save(outfile, "JPEG", quality=100)
else:
print "Error: cannot detect faces on %s" % infile

if __name__ == "__main__":
process(\'input.jpg\', \'output.jpg\')

代码到此结束,上面的例子看不懂,没关系,因为我们大量使用了库里面的函数和方法,如果看不懂,我们可以去网上查或者使用手册,只要借助这些看懂这段代码就ok,重要的是掌握其中的人脸识别实现思想